MSE-2: Fluorination of α-MnO₂ for Energy Storage Devices Geoffrey Xiao, Mohammad Hassan, Sam Kulesa

Problem Statement:

 α -MnO₂ has superior specific capacity for use as a cathode in lithium-ion batteries, but suffers from large decreases in capacity upon charge/discharge cycling. Can fluorination of α -MnO₂ improve capacity retention?

Approach:

Developed fluorination techniques and compared fluorinated α -MnO₂ with pristine α -MnO₂ for energy storage:

- Optimized parameters for multiple fluorination techniques.
- Characterized samples using XRD & XPS to verify structure was maintained and fluorine was present with no contaminants.
- Tested and compared electrochemical performance and magnetic properties of fluorinated and pristine α -MnO₂.

Results:

XPS showed a strong Mn-F bond (684 eV) and no C-F bond (690 eV) in fluorinated MnO₂ (black)

XRD showed structural preservation after solution treatment at two concentrations

- XRD α structure was maintained after fluorination.
- XPS Mn-F bonds with no C-F bonds indicated no contaminants.
- Electrochemical Fluorination improved electrochemical performance.

Discussion & Conclusions:

- Two successful techniques were polymer degradation, in which a fluoropolymer was heated to release fluorine-containing byproducts that reacted with α -MnO $_2$, and a solution technique where fluorine salts were dissolved in a solution and stirred with α -MnO $_2$.
- XRD and XPS showed that the "α" structure was only maintained and fluorine was only incorporated under certain parameters, indicating fluorination process is sensitive.
- Capacity retention improvement in fluorinated α -MnO $_2$ was theorized to be due to stronger Mn-F bonds compared to Mn-O bonds.

Contact:

Dr. Ekaterina Pomerantseva Anne Stevens Assistant Professor, Materials Science & Engineering *E-mail:* ep423@drexel.edu

Dr. Steven May
Associate Professor,
Materials Science & Engineering *E-mail:* smay@drexel.edu

